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Abstract—Due to the friendship paradox, the average ro-
bustness of the single mutation neighbours (µn) of genotypes
on a neutral network is larger than the average robustness
of the genotypes (µg). Random walks on neutral networks
have an average degree equal to µn and, intuitively, we expect
that evolution will not converge on populations whose average
degree is considerably lower than this. This paper argues that
a population achieving an average robustness higher than µn is
facilitated by nodes of degree higher than µn being mutationally
biased towards other nodes of degree higher than µn. Thus,
we present the hypothesis that, for biologically realistic degree
distributions, assortativity allows selection to increase robustness
above µn. Furthermore, although counterexamples do exist, it
is argued that it is highly plausible that in the majority of
cases in which selection increases robustness above µn, that the
neutral network is assortative. These arguments are reinforced by
simulations of evolution on randomly generated Erdős-Renyi and
power-law networks. Elucidating the role of assortativity provides
valuable insight into the mechanisms by which robustness evolves
as well as the conditions under which it will do so. Moreover,
it demonstrates the large influence that higher-order mutational
biases can have on evolutionary dynamics.

I. INTRODUCTION

Mutational bias is emerging as a pertinent topic in the study
of both digital and natural evolution. This is due to the fact that
biases in the mutational neighbourhoods of genotypes enable
two critical features of evolutionarily successful organisms:
evolvability [1] and mutational robustness [2].

The existence of such biases is fundamentally linked to
the manner in which genetic information is translated into
phenotypes. In Evolutionary Computing (EC) this is termed
the representation problem and concerns itself with the issue of
how to represent and adapt (mutate and recombine) genotypes
in order that a broad range of complex solutions can be
represented by relatively simple genotype encodings [3]. The
choice of representation and associated operators has been
found to have a profound impact on both the evolution of
viable solutions as well as other aspects of the evolutionary
dynamics [3], [4], [5]. A plethora of representations have been
proposed for a variety of task domains [6]. These range from
the simple one-to-one encoding of the genetic algorithm [7] to
developmental encodings which map a small genotype space
onto a subset of a substantially larger phenotype space [8].

Similarly, in nature, genetic information defining the form
and function of an organism is stored within its genotype,

however, the developmental process which translates this
information into phenotypes (the G→P map) is not well
understood [9]. Yet, it has become clear that the G→P map
is neither one-to-one nor linear [10]. In many organisms and
Ribonucleic acid (RNA) folding [11], it has been found that
many genotypes can code for a single phenotype and that
genetic change resulting from mutation is not proportional to
phenotypic change [9], [2], [12].

These features of the G→P map allow for the phenotypes
encoded for by a genotype’s mutational neighbours to be
a non-uniform sampling of the encoded phenotypes in the
entire genotype space, that is biased. This opens up the
possibility that this sampling is in some way advantageous
[13], [12], [14], [15], [16] and this has been interpreted as
increasing evolvability [1], [17], [18]. Furthermore, it has been
demonstrated that robots evolving in fluctuating environments
with many-to-one encodings are able to evolve mutational
biases that improve their rate of adaptation to environmental
changes [19], [20], [21].

As many genotypes can code for one phenotype, it is pos-
sible that some number of a genotype’s mutational neighbors
code for the same phenotype as it does, thus affording the
genotype a degree of mutational robustness [2], [22]. It has
been found that a variety of organisms, as well as RNA
folding, have a substantial degree of mutational robustness
[23]. This robustness has been shown to play an important
role in facilitating evolvability by allowing for greater genetic
variation within a population [24] as well as access to a
larger region of the genotype space [2]. Moreover, it has been
demonstrated that evolvability facilitating rapid adaptation to
environmental change is concomitant with robustness, as both
are dependent on mutational biases [25].

The importance of robustness begs the question of how it
evolved and whether selection favors its emergence. Under
the assumptions that the population is evolving on a fitness
plateau and that non-identical offspring are non-viable, it is
easy to see the selective advantage that robustness confers.
Robust genotypes have a greater probability of producing
viable offspring which will go on to reproduce. This is a
selective advantage which is not conferred by fitness, leading
Bullock to label it effective fitness [26].

A useful tool in the study of robustness is the neutral



Fig. 1. Plots of the difference between the average robustness of the population and the network’s average robustness of mutational neighbors (µn) over
evolutionary time for the various values of the assortativity coefficient (ρ). These results are concerning evolution on the 100 Erdős-Renyi networks rewired
to have each of the specified values of ρ and the plots are of the average over these 100 runs. The standard deviation is represented by the shaded region
around each line. The figure on the left displays these results for networks with 10N edges and the figure on the right concerns those with 20N edges.

network, that is networks whose nodes are the genotypes of
a given fitness where edges connect nodes who differ by
a single mutation. Topological features of neutral networks
have been used to study the evolution of robustness with
great effect. Van Nimwegen et. al. [23] along with Wilke
[27] studied the equilibrium distribution of infinite populations
evolving asexually and demonstrated that the population’s
average robustness (µg) is equal to the network’s spectral
radius.

Despite this result’s insight, the spectral radius is an opaque
network measure, which cannot easily be related to other
relevant metrics such as the degree distribution and degree-
degree correlation. Moreover, it does little to elucidate the
underlying mechanics of the evolution of robustness, such
as higher order mutational biases and the extent to which
selection has increased robustness.

Although robustness itself represents a type of mutational
bias, one can question the existence and role of higher order
mutational biases, that is biases towards biases. Indeed, mu-
tations on the neutral network, that is mutations that lead to
viable genotypes, are biased towards higher degree nodes due
to the friendship paradox [28]. This effect is named after the
phenomenon where in social networks the average number
of friends of friends is higher than the average number of
friends. Moreover, this effect is present in all networks, where
the average number of neighbors of neighbors is higher than
the average number of neighbors of nodes in the network.
The cause of this paradox is that sampling the degrees of
neighbors is equivalent to sampling the degrees of nodes at the
end of edges, which is biased towards higher degree nodes.
Using notation applicable to neutral networks, the relationship
between these two averages can be expressed as: [28]

µn = µg +
σ2
g

µg
(1)

where µg is the average degree (robustness) of genotypes on
the neutral network, σ2

g is the variance of these degrees and
µn is the average degree of single mutation neighbors. An

implication of this result, as demonstrated by van Nimwegen
et. al. [23], is that random walks on neutral networks result in
an average neutrality equal to µn.

Intuitively, we would not expect populations to converge on
an average level of robustness substantially lower than what a
random walk would provide. Moreover, it gives us a bench-
mark with which to conclude that selection has increased or
decreased robustness. Various authors, including van Nimwe-
gen et. al. [23] and Wilke [27] have demonstrated increases in
the robustness of populations of various modelled organisms
over time. However, they have compared the resultant level of
robustness with the network genotype average (µg) as opposed
to the neighbor average (µn). Furthermore, these authors do
not examine the circumstances under which selection would
be unable to increase robustness, or could even decrease it.

Although robust genotypes have a selective advantage in
that they produce more viable offspring, if these offspring
themselves are not robust it is difficult to see how the popula-
tion could converge on this lineage. Therefore, the selection of
robustness is facilitated by the existence of highly robust nodes
whose offspring are also highly robust. This sort of higher
order mutational bias is provided by network assortativity,
that is, correlation in the degrees of the nodes at the end
of edges [29]. Thus, the central hypothesis of this paper is
that, for biologically realistic degree distributions, assortativity
allows selection to increase robustness above µn. Furthermore,
although counterexamples do exist, it is argued that it is highly
plausible that in the majority of cases in which selection
increases robustness above µn, that the neutral network is
assortative.

Experiments are presented in which randomly generated
Erdős-Renyi networks were subjected to a rewiring algorithm
to make them assortative or disassortative. It was found
that evolution on assortative, unassortative and disassortative
networks caused populations to achieve an average robustness
higher than, equal to and slightly less than µn, respectively.
Finally, experiments are presented in which populations are
evolved on non-rewired power-law networks, which tended to



Parameter Value
number of nodes (N ) 1000
number of edges [10N, 20N ]

TABLE I
PARAMETERS FOR THE ERDŐS-RENYI NETWORKS

be disassortative. In a few instances it was found that disas-
sortative networks were capable of producing populations with
average robustness substantially higher than µn. A discussion
is presented explaining this counterexample as being due to
the outsized effect of extremely high degree nodes and biases
towards their progeny being identical.

II. METHODS

A. Random Network Generation

Networks were randomly generated using the graph-tool
[30] software library and the metropolis-hastings algorithm
[29] implemented therein. All networks were checked for
connectedness and disconnected networks were discarded, as
the above mentioned results of van Nimwegen et. al. [23]
only apply to connected networks and the analysis for non-
connected networks is substantially more complicated.

Networks were generated to either conform to the Erdős-
Renyi model [32], or to have a power-law degree distribution.
The relevant parameters for the Erdős-Renyi networks are
presented in table I. In the power-law networks the degrees
were distributed according to pk (k − 2)−γ where pk and
k are the degree probability and degree, respectively. Here
k was limited to the range [3, 500], where the lower bound
was chosen to increase the proportion of produced networks
which were connected and the upper bound was chosen for
computational reasons. As with the Erdős-Renyi networks, the
number of nodes in the network (N ) was chosen to be 1000.

B. Assortative rewiring

The expected assortativity value (ρ) for the Erdős-Renyi
networks is 0 [29]. In order to both increase and decrease the
assortativity the rewiring algorithm of van Miegham et. al.
[33], was used. This algorithm operates by iteratively picking
two edges at random and observing the degrees of the four
nodes at their endpoints. If the goal is to increase assortativity,
the two nodes with the highest degrees are connected by
an edge and, likewise, the lowest degree nodes are also
connected. Moreover, the original two edges are removed from
the network. Similarly, if the goal is to decrease assortativity,
the maximum degree node is connected to the minimum
degree node and the remaining two nodes are also connected.
Clearly, rewiring does not take place if the desired connectivity
arrangement between the four nodes was already present. This
iterative process is repeated until the desired value of ρ is
achieved.

C. Evolutionary Model

A population of M individuals were initialized by assigning
them each a random node on the network. Each generation P

Parameter Value
Population size (M ) 1000
Parents selected per generation (P ) 1000
Assumed genome length (L) 200
Recombination None

TABLE II
EVOLUTIONARY ALGORITHM PARAMETERS

parents were selected randomly from the population to produce
offspring. With a probability d/L an offspring is produced
at a node neighboring the parent, where d is the parent’s
degree and L is the assumed genome length and therefore
the total number of possible mutations. These dynamics are
based on the assumption that genotypes which fall off the
neutral network are completely non-viable. Moreover, they are
equivalent to those studied by van Nimwegen et. al. [23] and
and Wilke [27] with off network fitness (σ) equal to 0 and a
variable mutation rate (µ) equal to P 〈d〉 /L, where 〈d〉 is the
average degree of genotypes in the population. A full list of
evolutionary parameters is listed in table II.

III. EXPERIMENTS AND RESULTS

In order to ascertain the influence of assortativity on the
evolution of robustness on neutral networks, networks were
randomly generated so as to conform to the Erdős-Renyi
model. This model was chosen as it represents a uniform
sampling of networks with a given number of nodes and edges
[32], thus giving our results broad relevence. For each of the
seven values of ρ, [−0.7,−0.2, 0, 0.2, 0.7], 100 networks were
generated, using the techniques and parameters specified in
section . Each of these networks were rewired so as to attain
their given assortativity value ρ. Following this, the evolution
of a population was simulated as specified in the section II-C.
Moreover, this was done for both of the two tested numbers
of network edges.

The difference between the average robustness of the pop-
ulation and µn is plotted in figure 1. We can see here that
populations evolving on unassortative networks attain a level
of robustness equal to µn, that those evolving on assortative
networks attain higher robustness and that those evolving on
disassortative networks attain a lower value. These results
support our hypothesis that the evolution of robustness higher
than µn is facilitated by assortative neutral networks.

In addition, an average of the degree-degree distributions
of the generated networks is plotted in figure 2. This plot
elucidates the manner in which, in assortative networks, the
higher degree nodes have a mutational bias towards other high
degree nodes.

Although the results presented in figure 2 indicate that, for
the majority of networks, robustness will only increase above
µn in the event that the network is assortative, it is reasonable
that there may be exceptions to this trend. As assortativity is a
global property of the network, it was concluded that networks
which have nodes which deviate substantially from the average
in some way would be a promising place to look. Power-law



Fig. 2. Plots of the degree-degree distributions of the Erdős-Renyi networks used in the experiments for each of the various values of the assortativity
coefficient (ρ). These plots are the average over the 100 networks generated and rewired for each value of (ρ) with the standard deviation being represented
by the shaded regions. The figure on the left displays these results for networks with 10N edges and the figure on the right concerns those with 20N edges.

(scale free) networks can contain nodes with degrees orders
of magnitude larger than the network average.

Due to these arguments, power law networks were generated
as specified in the methods section. However, these networks
were not rewired, as it was found that producing a significant
change in their assortativity was prohibitively computationally
expensive. We generated 100 such networks for each value of
γ and the chosen values as well as the resultant average values
of ρ and µ are shown in table III.

Figure 3 contains plots of the difference between the average
robustness of the population and µn. Lower values of γ caused
populations to converge on an average robustness less than
µn. However, the highest value of γ tested, 2.5, on average
caused populations to have a mean robustness equal to µn.
Further analysis of these results revealed that, 77 of the 100
generated networks caused their population to achieve a mean
robustness greater than µn. The largest difference between the
mean robustness and µn was a value of 3.6, on a network
where µn = 7.7 and ρ = −0.02.

Fig. 3. Plots of the difference between the average robustness of the
population and the network’s average robustness of mutational neighbors (µn)
over evolutionary time when evolution occurred on the power-law networks.
The plots are the averages over the runs on each of the 100 networks generated
for each value of gamma. The standard deviation is represented by the shaded
region around each line.

γ ρ µn
1.01 -0.55 (0.03) 245 (8)
1.1 -0.62 (0.03) 229 (7)
1.3 -0.65 (0.02) 185 (6)
1.5 -0.61 (0.05) 150 (12)
2.5 -0.05 (0.03) 11 (9)

TABLE III
THE VALUES OF ρ AND µn FOR THE POWER-LAW NETWORKS, AVERAGED

OVER THE 100 GENERATED NETWORKS FOR EACH VALUE OF γ .
STANDARD DEVIATIONS ARE SHOWN IN BRACKETS.

IV. DISCUSSION

Due to the fact that the average robustness of genotypes
found by following a mutation is higher than the average
across all genotypes on the network, the bar with which to
judge the efficacy of selection is raised. Although a population
might achieve a mean level of robustness greater than the
average in the network, if the population’s average robustness
is lower than the average achieved by a random walk on the
network then we conclude that selection has hindered, rather
than helped, the evolution of robustness.

With this in mind, it is of interest to note that in the
disassortatively rewired Erdős-Renyi networks, the resultant
robustness of the population was lower than µn. The addition
of selection decreased the robustness below that achievable by
a random sampling of mutations.

This paper set out to demonstrate the importance of assor-
tativity in the evolution of robustness by indicating not only
that the assortativity of a network is positively correlated with
its ability to produce robust populations but also that the bulk
of networks which increase robustness above µn are likely
to be assortative. The fact that the disassortatively and unas-
sortatively rewired Erdős-Renyi networks, as well as the lower
exponent power-law networks yielded robustnesses lower than
µn supports this argument. Moreover, even though a majority
of the networks with the highest exponent did beget high
robustness, the average across all runs was roughly equal to
µn. Thus, in the bulk case, selection raising robustness requires
the higher order mutational bias provided by assortativity.



Nevertheless, it is appropriate to query the mechanisms by
which unassortative and disassortative networks can engen-
der the selection of robustness. Analysis of the populations
evolved on these networks showed that they contained multiple
copies of rare, extremely high-degree nodes. Moreover, due
to the high exponent, these nodes mainly connect to very
low degree nodes, of degrees three and four in our experi-
ments. Thus, we hypothesize that the population has converged
around these very high degree nodes and that these node’s
offspring either produce offspring identical to the high degree
nodes, or produce low degree nodes who’s progeny soon get
excluded from the population.

This hypothesis conforms to this paper’s core argumentation
behind the importance of assortativity in the evolution of
robustness, namely, that in order for selection to encourage the
emergence of robustness, the nodes who’s offspring selection
favors (those that are more robust) must produce lineages that
are biased towards high robustness.

V. CONCLUSION AND FUTURE WORK

As argued in the introduction, biases in genotype space are
not only of great consequence in evolutionary dynamics, but
are also emerging as pertinent topic of study within theoretical
biology and artificial life. However, very little attention has
been paid towards higher order biases, that is biases towards
biases. This paper has explored this topic by investigating
mutational biases towards robustness. It has done so from
the starting point of the bias present in all neutral networks,
implied by the friendship paradox. It further demonstrated that,
although there are some exceptions, the evolution of robustness
higher than provided by this base bias requires the neutral
network to be assortative, as this biases high degree nodes to
other high degree nodes. This provides valuable insight into
the mechanics by which robustness evolves, delineating the
roles which selection and higher order mutational biases play
as well as the relationships between them.

Two main avenues of future work are being considered
at present. The first is to gain a quantitative understanding
of the proportion of those networks which allow for the
evolution of high robustness that are assortative, unassortative
and disassortative. The second is to attempt to achieve a
broader framework than simple degree-degree assortativity as
an explanation for the selection of high robustness. Promising
avenues of research include local assortativity [34], which
could be used in the description of networks with certain
extremal nodes which dominate evolutionary dynamics, and
long-range degree correlations [35], which could be used
to analyse cases in which biases towards robustness in an
organisms progeny is not present in the first generation.
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